

This second edition preserves the readability while expanding the content to include some of the most up-to-date 'essential concepts'.

SECOND E

The ultimate goal is to provide the reader with the transition rates of a ferromagnetic or antiferromagnetic layer. The author has been a leader in the field of making these complex calculations.

Macroscopic Quantum Phenomena in Spintronics

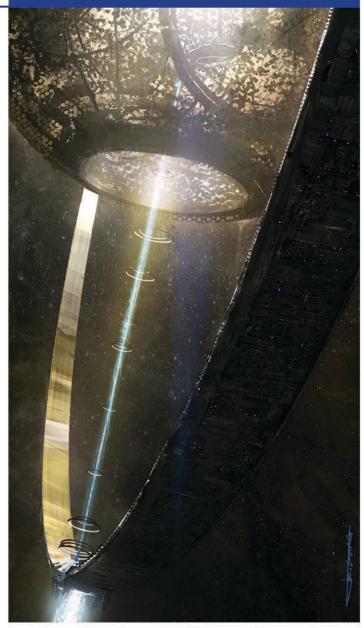
Herbert P. Simanjuntak

ICTP Associate! 1995-2000

LECTURES ON ASTROPHYSICS

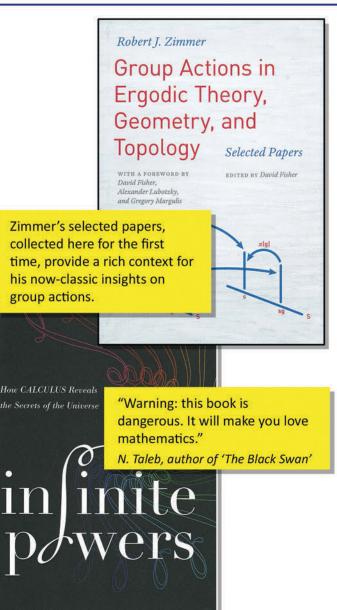
Weinberg's account of classic and contemporary aspects of astrophysics with an emphasis on analytic calculations and physical understanding.

STEVEN WEINBERG


MHD Waves in the Solar Atmosphere

Bernard Roberts

"Highly recommended to those students, post-docs, and researchers who are willing to go further into the fundamental understanding of wave phenomena in astrophysical plasmas." *M. Aschwanden, The Observatory*


new in the library

February 2020 - Physics

take me with you if you please

STEVEN STROGATZ

Springer Monographs in Mathematics

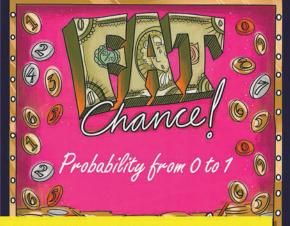
Wilfredo Urbina-Romero

Gaussian Harmonic Analysis

> BENEDICT GROSS JOE HARRIS EMILY RIEHL present

"Well-written and

mainly self-contained, this book is a


reader-friendly

analysis."

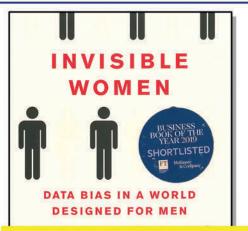
manual in the field of

M. Perelmuter, zbMATH

Gaussian harmonic

"Fun and friendly... There's a high probability you'll love it." S. Strogatz

new in the library


February 2020 - Mathematics

Which is Which? Connect The Equation!

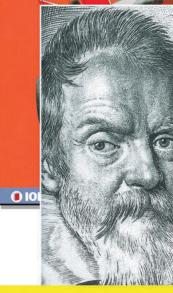
$i\hbar {\partial \over \partial t} \Psi = H \Psi$
$\frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} - rV = 0$
$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$
$\Phi(x) = \frac{1}{\sqrt{2\pi\rho}} e^{\frac{(x-\mu)^2}{2\rho^2}}$
nus One $E = mc^2$
yhedra $\log xy = \log x + \log y$
$ \begin{aligned} \nabla \cdot \mathbf{E} &= 0 & \nabla \cdot \mathbf{H} &= 0 \\ \nabla \times \mathbf{E} &= -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t} & \nabla \times \mathbf{H} &= \frac{1}{c} \frac{\partial E}{\partial t} \end{aligned} $
$a^2 + b^2 = c^2$
$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f}$
n $i^2 = -1$
$F = G \frac{m_1 m_2}{r^2}$
bodynamics $x_{t+1} = kx_t(1-x_t)$
$f(\omega) = \int_{\infty}^{\infty} f(x) e^{-2\pi i x \omega} \mathrm{d} x$
$\frac{\mathrm{d}f}{\mathrm{d}t} = \lim_{h \to 0} = \frac{f(t+h) - f(t)}{h}$
V - E + F = 2
$\mathrm{d}S \ge 0$
$H = -\sum p(x)\log p(x)$

take me with you if you please

"An uncompromising blitz of facts, sad, mad, bad and funny ... the ambition and scope is huge." *Times (UK)*

"Excellent, important, disarmingly down to earth, they seek to shed much-needed light upon the distortions that bad economics bring to public debates."

Observer

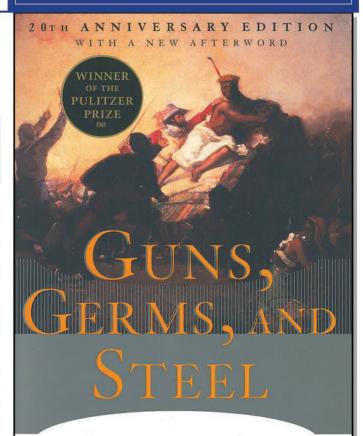


IOP Expanding Physics

Entrepreneurship for Creative Scientists

Dawood Parker Surya Raghu Richard Brooks

> Written by experienced scientists and entrepreneurs, this book deals with businesses started by scientists based on innovation.


A unique critical edition which presents key early biographical accounts of the life and work of Galileo Galilei, written by his close contemporaries. ON ^{THE} LIFE of GALILEO

VIVIANI'S HISTORICAL ACCOUNT AND OTHER EARLY BIOGRAPHIES

Edited, translated & annotated by STEFANO GATTEI

new in the library

February 2020 - Other Fields

The FATES of HUMAN SOCIETIES

JARED DIAMOND

"Artful, informative, and delightful.... There is nothing like a radically new angle of vision for bringing out unsuspected dimensions of a subject."

W.N. McNeil, New York Review of Books

take me with you if you please